Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Genome ; : e20442, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481294

RESUMO

Ambrosia artemisiifolia and Ambrosia trifida (Asteraceae) are important pest species and the two greatest sources of aeroallergens globally. Here, we took advantage of a hybrid to simplify genome assembly and present chromosome-level assemblies for both species. These assemblies show high levels of completeness with Benchmarking Universal Single-Copy Ortholog (BUSCO) scores of 94.5% for A. artemisiifolia and 96.1% for A. trifida and long terminal repeat (LTR) Assembly Index values of 26.6 and 23.6, respectively. The genomes were annotated using RNA data identifying 41,642 genes in A. artemisiifolia and 50,203 in A. trifida. More than half of the genome is composed of repetitive elements, with 62% in A. artemisiifolia and 69% in A. trifida. Single copies of herbicide resistance-associated genes PPX2L, HPPD, and ALS were found, while two copies of the EPSPS gene were identified; this latter observation may reveal a possible mechanism of resistance to the herbicide glyphosate. Ten of the 12 main allergenicity genes were also localized, some forming clusters with several copies, especially in A. artemisiifolia. The evolution of genome structure has differed among these two species. The genome of A. trifida has undergone greater rearrangement, possibly the result of chromoplexy. In contrast, the genome of A. artemisiifolia retains a structure that makes the allotetraploidization of the most recent common ancestor of the Heliantheae Alliance the clearest feature of its genome. When compared to other Heliantheae Alliance species, this allowed us to reconstruct the common ancestor's karyotype-a key step for furthering of our understanding of the evolution and diversification of this economically and allergenically important group.

2.
Pest Manag Sci ; 74(5): 1079-1088, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28276187

RESUMO

BACKGROUND: The glyphosate-resistant rapid response (GR RR) resistance mechanism in Ambrosia trifida is not due to target-site resistance (TSR) mechanisms. This study explores the physiology of the rapid response and the possibility of reduced translocation and vacuolar sequestration as non-target-site resistance (NTSR) mechanisms. RESULTS: GR RR leaf discs accumulated hydrogen peroxide within minutes of glyphosate exposure, but only in mature leaf tissue. The rapid response required energy either as light or exogenous sucrose. The combination of phenylalanine and tyrosine inhibited the rapid response in a dose-dependent manner. Reduced glyphosate translocation was observed in GR RR, but only when associated with tissue death caused by the rapid response. Nuclear magnetic resonance studies indicated that glyphosate enters the cytoplasm and reaches chloroplasts, and it is not moved into the vacuole of GR RR, GR non-rapid response or glyphosate-susceptible A. trifida. CONCLUSION: The GR RR mechanism of resistance is not associated with vacuole sequestration of glyphosate, and the observed reduced translocation is likely a consequence of rapid tissue death. Rapid cell death was inhibited by exogenous application of aromatic amino acids phenylalanine and tyrosine. The mechanism by which these amino acids inhibit rapid cell death in the GR RR phenotype remains unknown, and it could involve glyphosate phytotoxicity or other agents generating reactive oxygen species. Implications of these findings are discussed. The GR RR mechanism is distinct from the currently described glyphosate TSR or NTSR mechanisms in other species. © 2017 Society of Chemical Industry.


Assuntos
Ambrosia/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/metabolismo , Plantas Daninhas/efeitos dos fármacos , Ambrosia/metabolismo , Cloroplastos/metabolismo , Glicina/metabolismo , Folhas de Planta/metabolismo , Plantas Daninhas/metabolismo , Vacúolos/metabolismo
3.
Pest Manag Sci ; 74(5): 1071-1078, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28266132

RESUMO

BACKGROUND: Glyphosate-resistant (GR) Ambrosia trifida is now present in the midwestern United States and in southwestern Ontario, Canada. Two distinct GR phenotypes are known, including a rapid response (GR RR) phenotype, which exhibits cell death within hours after treatment, and a non-rapid response (GR NRR) phenotype. The mechanisms of resistance in both GR RR and GR NRR remain unknown. Here, we present a description of the RR phenotype and an investigation of target-site mechanisms on multiple A. trifida accessions. RESULTS: Glyphosate resistance was confirmed in several accessions, and whole-plant levels of resistance ranged from 2.3- to 7.5-fold compared with glyphosate-susceptible (GS) accessions. The two GR phenotypes displayed similar levels of resistance, despite having dramatically different phenotypic responses to glyphosate. Glyphosate resistance was not associated with mutations in EPSPS sequence, increased EPSPS copy number, EPSPS quantity, or EPSPS activity. CONCLUSION: These encompassing results suggest that resistance to glyphosate in these GR RR A. trifida accessions is not conferred by a target-site resistance mechanism. © 2017 Society of Chemical Industry.


Assuntos
Ambrosia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Glicina/análogos & derivados , Resistência a Herbicidas , Herbicidas/farmacologia , Plantas Daninhas/efeitos dos fármacos , Ambrosia/genética , Ambrosia/fisiologia , Glicina/farmacologia , Meio-Oeste dos Estados Unidos , Ontário , Plantas Daninhas/fisiologia , Tennessee
4.
Theor Appl Genet ; 119(4): 577-85, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19495723

RESUMO

In weed species, resistance to herbicides inhibiting acetohydroxyacid synthase (AHAS) is often conferred by genetic mutations at one of six codons in the AHAS gene. These mutations provide plants with various levels of resistance to different chemical classes of AHAS inhibitors. Five green foxtail [Setaria viridis (L.) Beauv.] populations were reported in Ontario with potential resistance to the AHAS-inhibiting herbicide imazethapyr. The objectives of this study were to confirm resistance, establish the resistance spectrum for each of the five populations, and determine its genetic basis. Dose response curves were generated for whole plant growth and enzyme activity, and the AHAS gene was sequenced. Resistance was confirmed by determining the resistance factor to imazethapyr in the five resistant green foxtail populations for whole plant dose response experiments (21- to 182-fold) and enzyme assays (15- to 260-fold). All five imazethapyr-resistant populations showed cross-resistance to nicosulfuron and flucarbazone while only three populations had cross-resistance to pyrithiobac. Sequence analyses revealed single base-pair mutations in the resistant populations of green foxtail. These mutations were coded for Thr, Asn, or Ile substitution at Ser(653). In addition, a new mutation was found in one population that coded for an Asp substitution at Gly(654). There is an agreement between the spectra of resistance observed and the type of resistance known to be conferred by these substitutions. Moreover, it indicates that, under similar selection pressure (imazethapyr), a variety of mutations can be selected for different populations, making the resistance pattern difficult to predict from herbicide exposure history.


Assuntos
Acetolactato Sintase/genética , Alelos , Resistência a Herbicidas/genética , Setaria (Planta)/enzimologia , Setaria (Planta)/genética , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Aminoácidos/genética , Biomassa , Ácidos Nicotínicos/farmacologia , Polimorfismo Genético , Análise de Sequência de DNA , Setaria (Planta)/efeitos dos fármacos
5.
Pest Manag Sci ; 62(7): 584-97, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16718739

RESUMO

Resistance to herbicides inhibiting acetolactate synthase (ALS) has been increasing at a faster rate than in any other herbicide group. The great majority of these cases are due to various single-nucleotide polymorphisms in the ALS gene endowing target site resistance. Many diagnostic techniques have been devised in order to confirm resistance and help producers to adopt the best management strategies. Recent advances in DNA technologies coupled with the knowledge of sequence information have allowed the development of accurate and rapid diagnostic tests. While whole plant-based diagnostic techniques such as seedling bioassays or enzyme-based in vitro bioassays provide accurate results, they tend to be labour- and/or space-intensive and will only respond to the particular herbicides tested, making resolution of cross-resistance patterns more difficult. Successful DNA-based diagnosis of ALS inhibitor resistance has been achieved with three main techniques, (1) restriction fragment length polymorphism, (2) polymerase chain reaction amplification of specific alleles and (3) denaturing high-performance liquid chromatography. All DNA-based techniques are relatively rapid and provide clear identification of the mutations causing resistance. Resistance based on non-target mechanisms is not identified by these DNA-based methods; however, given the prevalence of target site-based ALS inhibitor resistance, this is a minor inconvenience.


Assuntos
Acetolactato Sintase/antagonistas & inibidores , Análise Mutacional de DNA/métodos , Herbicidas/farmacologia , Plantas/efeitos dos fármacos , Acetolactato Sintase/genética , Alelos , Cromatografia Líquida de Alta Pressão/métodos , Resistência a Medicamentos/genética , Herbicidas/química , Mutação , Plantas/enzimologia , Plantas/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Plântula/efeitos dos fármacos , Plântula/enzimologia , Plântula/genética
6.
New Phytol ; 169(2): 251-64, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16411929

RESUMO

We investigated the effect of a herbicide resistance-conferring mutation on fitness in Amaranthus powellii. Morphological and histological observations were made. Growth and leaf appearance were recorded for six resistant and six susceptible populations. The competitiveness of a susceptible population was compared with that of a resistant population using a replacement series experiment. Leaves of the resistant plants were distorted and much smaller than those of susceptible plants. Additionally, they exhibited an abnormal morphological and structural pattern consisting of a mosaic of heterogeneous areas in the same leaf blade. The roots and stems had similar structures in susceptible and resistant plants, but the former were up to four times more developed. The resistant plants were slower to develop and produced 67% less biomass and 58% lower leaf area than susceptible plants. Under competitive conditions, one susceptible population outperformed one resistant population by 7-15 times. The Trp(574)Leu acetohydroxyacid synthase (AHAS) mutation appears to have considerable pleiotropic effects on the early growth and development of the plants which, in competitive conditions, greatly reduce fitness.


Assuntos
Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Amaranthus/efeitos dos fármacos , Amaranthus/fisiologia , Herbicidas/farmacologia , Mutação/genética , Amaranthus/enzimologia , Amaranthus/genética , Biomassa , Resistência a Medicamentos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...